

PREDICTIVE MAINTENANCE STRATEGIES FOR PROLONGING LIFESPAN OF ELECTROMECHANICAL COMPONENTS

Akshay Gaikwad¹, Srikanthudu Avancha², Vijay Bhasker Reddy Bhimanapati³, Om Goel⁴, Niharika Singh⁵ & Raghav Agarwal⁶

¹Rochester Institute of Technology, Rochester, New York, US,
²Department of CSE Bharathidasan University Tiruchirappalli Tamilnadu, India
³Department of Computer Science Southern University and A&M College L.A., U.S.A.
⁴ABES Engineering College Ghaziabad, India
⁵ABES Engineering College Ghaziabad, India
⁶Assistant System Engineer, TCS Bangaluru, India

ABSTRACT

Predictive maintenance (PdM) has emerged as a key strategy for enhancing the longevity and reliability of electromechanical components in various industries. This approach leverages real-time data and advanced analytics, including machine learning algorithms, to predict potential failures before they occur. By continuously monitoring critical parameters such as temperature, vibration, and electrical currents, predictive maintenance allows for early detection of performance degradation, reducing unplanned downtime and optimizing the maintenance schedule. This paper explores the fundamental principles of PdM, its application to electromechanical systems, and the benefits of transitioning from traditional time-based maintenance to condition-based models. The integration of sensors and IoT (Internet of Things) devices with predictive algorithms not only extends the operational lifespan of components but also minimizes maintenance costs and improves overall equipment efficiency. Challenges such as data integration, model accuracy, and implementation in complex systems are discussed, alongside future opportunities for enhancing predictive maintenance strategies with advancements in artificial intelligence and cloud computing. Through case studies and analysis, this paper demonstrates the impact of PdM on the sustainability and reliability of electromechanical components in industries such as manufacturing, healthcare, and transportation.

KEYWORDS: Predictive maintenance, electromechanical components, machine learning, real-time data, condition-based maintenance, IoT, sensors, operational lifespan, cost reduction, equipment efficiency, artificial intelligence, cloud computing

Article History

Received: 12 Nov 2023 / Revised: 18 Nov 2023 / Accepted: 28 Nov 2023